viernes, 12 de abril de 2019

teoria de conjuntos

TEORÍA DE CONJUNTOS

CONJUNTO: 
  • Que se hace simultáneamente a otra cosa o con un fin común.
  • Agrupación de personas, animales o cosas considerados como un todo homogéneo, sin distinguir sus partes.
  • En matemáticas, un conjunto es una colección de elementos con características similares considerada en sí misma como un objeto. Los elementos de un conjunto, pueden ser las siguientes: personas, números, colores, letras, figuras, etc. 


      SUBCONJUNTOS :
  • Conjunto de elementos que tienen las mismas características y que está incluido dentro de otro conjunto más amplio.
  • En las matemáticas, un conjunto A es subconjunto de un conjunto B si A «está contenido» dentro de B.
  • Los conjuntos pueden tener elementos de cualquier tipo: números, letras, objetos, personas… Por ejemplo, este conjunto contiene frutas:
   DIAGRAMAS DE VENN:

Descripción

  • Los diagramas de Venn son esquemas usados en la teoría de conjuntos, tema de interés en matemáticas, lógica de clases y razonamiento diagramático. Estos diagramas muestran colecciones de cosas por medio de líneas cerradas.
  • Un diagrama de Venn usa círculos que se superponen u otras figuras para ilustrar las relaciones lógicas entre dos o más conjuntos de elementos. A menudo, se utilizan para organizar cosas de forma gráfica, destacando en qué se parecen y difieren los elementos. Los diagramas de Venn, también denominados "diagramas de conjunto" o "diagramas lógicos", se usan ampliamente en las áreas de matemática, estadística, lógica, enseñanza, lingüística, informática y negocios. Muchas personas los vieron por primera vez en la escuela cuando estudiaron Matemática o Lógica, ya que los diagramas de Venn se convirtieron en una parte del plan de estudio de la "nueva Matemática" en la década de 1960.
  • Un Diagrama de Venn es una representación gráfica, normalmente óvalos o círculos, que nos muestra las relaciones existentes entre los conjuntos. Cada óvalo o círculo es un conjunto diferente. La forma en que esos círculos se sobreponen entre sí muestra todas las posibles relaciones lógicas entre los conjuntos que representan. Por ejemplo, cuando los círculos se superponen, indican la existencia de subconjuntos con algunas características comunes.
    UNIÓN
  • En la teoría de conjuntos, la unión de dos conjuntos es una operación que resulta en otro conjunto, cuyos elementos son los mismos de los conjuntos iniciales.
INTERSECCIÓN

  • En teoría de conjuntos, la intersección de dos conjuntos es una operación que resulta en otro conjunto que contiene los elementos comunes a los conjuntos de partida. 
COMPLEMENTO


  • El complemento de un conjunto o conjuntocomplementario es otro conjunto que contiene todos los elementos que no están en el conjunto original. Para poder definirlo es necesario especificar qué tipo de elementos se están utilizando, o de otro modo, cuál es el conjunto universal.

Ley Distributiva

  •  La Ley Distributiva expresa que se obtiene la misma respuesta cuando multiplicas un conjunto de números por otro número que cuando se hace cada multiplicación por separado. Ejemplo: (2 + 4) × 5 = 2×5 + 4×5. Como se puede ver al realizar los cálculos 6 × 5 = 30 y 10 + 20 = 30. Entonces, el "2+4" puede ser "distribuido" entre los "por 5" en 2 por 5 y 4 por 5.

Leyes de De Morgan

Descripción

  • En lógica proposicional y álgebra de Boole, las leyes de De Morgan​​​ son un par de reglas de transformación que son ambas reglas de inferencia válidas. Las normas permiten la expresión de las conjunciones y disyunciones puramente en términos de vía negación.
Diferencia de conjuntos

Descripción

  • En teoría de conjuntos, la diferencia de dos conjuntos es una operación que da como resultado otro conjunto con los elementos del primer conjunto sin los elementos del segundo conjunto.
Diferencia simétrica

Descripción

  • En teoría de conjuntos, la diferencia simétrica de dos conjuntos es una operación que resulta en otro conjunto cuyos elementos son aquellos que pertenecen a alguno de los conjuntos iniciales, sin pertenecer a ambos a la vez.
Teoría de conjuntos

  • La teoría de conjuntos es una rama de la lógica matemática que estudia las propiedades y relaciones de los conjuntos: colecciones abstractas de objetos, consideradas como objetos en sí mismas. Los conjuntos y sus operaciones más elementales son una herramienta básica en la formulación de cualquier teoría matemática.​
Lógica matemática

Descripción

  • La lógica matemática, también llamada lógica simbólica, lógica teorética, lógica formal o logística, ​ es el estudio matemático de la lógica y su aplicación a otras áreas de la matemática y la ciencia. 
Álgebra de Boole

Descripción

  • El álgebra de Boole, también llamada álgebra booleana, en electrónica digital, informática y matemática es una estructura algebraica que esquematiza las operaciones lógicas.

viernes, 15 de marzo de 2019


TORRES HANOI

¿COMO ES EL ALGORITMO PARA RESOLVER EL PROBLEMA DE LAS TORRES HANOI?
El rompecabezas de la Torre de Hanoi fue inventado por el matemático francés Edouard Lucas en 1883. Se inspiró en una leyenda acerca de un templo hindú donde el rompecabezas fue presentado a los jóvenes sacerdotes. Al principio de los tiempos, a los sacerdotes se les dieron tres postes y una pila de 64 discos de oro, cada disco un poco más pequeño que el de debajo. Su misión era transferir los 64 discos de uno de los tres postes a otro, con dos limitaciones importantes. Sólo podían mover un disco a la vez, y nunca podían colocar un disco más grande encima de uno más pequeño. Los sacerdotes trabajaban muy eficientemente, día y noche, moviendo un disco cada segundo. Cuando terminaran su trabajo, dice la leyenda, el templo se desmenuzaría en polvo y el mundo se desvanecería.
Aunque la leyenda es interesante, usted no tiene que preocuparse de que el final del mundo ocurra pronto en cualquier momento. El número de movimientos necesarios para mover correctamente una torre de 64 discos es 2641=18,446,744,073,709,551,6152641=18,446,744,073,709,551,615. A una velocidad de un movimiento por segundo, ¡eso sería 584,942,417,355584,942,417,355 años! Claramente hay algo más en este rompecabezas de lo que parece.
La Figura 1 muestra un ejemplo de una configuración de discos en el proceso de movimiento del primer poste al tercero. Observe que, según especifican las reglas, los discos de cada poste se apilan de manera que los discos más pequeños estén siempre encima de los discos más grandes. Si usted no ha intentado resolver este rompecabezas antes, debe probarlo ahora. No necesita discos y postes elegantes, una pila de libros o trozos de papel servirán.
image
Figura 1: Una disposición ilustrativa de los discos para la Torre de Hanoi
¿Cómo vamos a resolver este problema recursivamente? ¿Cómo resolvería usted este problema en todo caso? ¿Cuál es nuestro caso base? Pensemos en este problema desde abajo hacia arriba. Supongamos que usted tiene una torre de cinco discos, originalmente en un poste. Si usted ya sabía cómo mover una torre de cuatro discos al poste dos, entonces podría mover fácilmente el disco inferior al poste tres, y luego mover la torre de cuatro discos desde el poste dos al poste tres. Pero ¿qué tal si usted no sabe cómo mover una torre de altura cuatro? Supongamos que usted sabía cómo mover una torre de altura tres al poste tres; entonces sería fácil mover el cuarto disco al poste dos y mover los tres discos del poste tres encima de aquél. Pero ¿qué tal si usted no sabe cómo mover una torre de tres discos? ¿Qué tal si usted mueve una torre de dos discos al poste dos y luego mueve el tercer disco al poste tres, y luego mueve la torre de altura dos encima de dicho disco? Pero ¿qué tal si todavía no sabe cómo hacer esto? Seguramente estaría de acuerdo en que mover un solo disco al poste tres es bastante fácil, trivial incluso podría decirse. Esto suena como un caso base.
El siguiente es un esquema de alto nivel de cómo mover una torre desde el poste de origen, hasta el poste destino, utilizando un poste intermedio:
  1. Mover una torre de altura-1 a un poste intermedio, utilizando el poste destino.
  2. Mover el disco restante al poste destino.
  3. Mover la torre de altura-1 desde el poste intermedio hasta el poste destino usando el poste de origen.
Siempre y cuando obedezcamos la regla de que los discos más grandes deben permanecer en la parte inferior de la pila, podemos usar los tres pasos anteriores recursivamente, tratando cualquier disco más grande como si ni siquiera estuviera allí. Lo único que falta en el esquema anterior es la identificación de un caso base. El problema de la torre de Hanoi más simple es una torre de un disco. En ese caso, sólo necesitamos mover un solo disco a su destino final. Una torre de un disco será nuestro caso base. Además, los pasos descritos anteriormente nos mueven hacia el caso base reduciendo la altura de la torre en los pasos 1 y 3. El Programa 1 muestra el código en Python para resolver el rompecabezas de la Torre de Hanoi.
Programa 1
1
2
3
4
5
def moverTorre(altura,origen, destino, intermedio):
    if altura >= 1:
        moverTorre(altura-1,origen,intermedio,destino)
        moverDisco(origen,destino)
        moverTorre(altura-1,intermedio,destino,origen)
Note que el código en el Programa 1 es casi idéntico a la descripción en español. La clave de la simplicidad del algoritmo es que realizamos dos llamadas recursivas diferentes, una en la línea 3 y otra en la línea 5. En la línea 3 movemos todo menos el disco inferior de la torre de origen hacia un poste intermedio. La siguiente línea simplemente mueve el disco inferior a su lugar final. Luego, en la línea 5, movemos la torre desde el poste intermedio hasta la parte superior del disco más grande. El caso base se detecta cuando la altura de la torre es 0; en ese caso no habrá nada que hacer, por lo que la función moverTorre simplemente regresa el control. Lo importante a tener en cuenta al tratar el caso base de esta manera es que simplemente el regreso desde moverTorre es lo que finalmente permite que la función moverDisco sea invocada.
La función moverDisco, que se muestra en el Programa 2, es muy simple. Todo lo que hace es imprimir que se está moviendo un disco de un poste a otro. Si usted codifica y ejecuta el programa moverTorrepodrá ver que le da una solución muy eficiente al rompecabezas.
Note que el código en el Programa 1 es casi idéntico a la descripción en español. La clave de la simplicidad del algoritmo es que realizamos dos llamadas recursivas diferentes, una en la línea 3 y otra en la línea 5. En la línea 3 movemos todo menos el disco inferior de la torre de origen hacia un poste intermedio. La siguiente línea simplemente mueve el disco inferior a su lugar final. Luego, en la línea 5, movemos la torre desde el poste intermedio hasta la parte superior del disco más grande. El caso base se detecta cuando la altura de la torre es 0; en ese caso no habrá nada que hacer, por lo que la función moverTorre simplemente regresa el control. Lo importante a tener en cuenta al tratar el caso base de esta manera es que simplemente el regreso desde moverTorre es lo que finalmente permite que la función moverDisco sea invocada.
La función moverDisco, que se muestra en el Programa 2, es muy simple. Todo lo que hace es imprimir que se está moviendo un disco de un poste a otro. Si usted codifica y ejecuta el programa moverTorrepodrá ver que le da una solución muy eficiente al rompecabezas.
Programa 2
def moverDisco(desde,hacia):
    print("mover disco de",desde,"a",hacia)
¿LAS TORRES DE HANOI SON DE COMBINACION O DE PERMUTACION?
Las torres de hanoi, son de permutacion ya que se agrupan las difrentes combinaciones de disco que se puden hacer par resolver el problema de las torres de hanoi.

No hay comentarios.:

Publicar un comentario